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Abstract—We propose a method to track a periodic RF
transmitter using a mobile receiver. By estimating the difference
in time-of-arrival (TOA) of the periodic messages at different
locations along its trajectory, the receiver is able to estimate
the transmitter location. A major challenge lies in separating
the time offset due to receiver movement from the time offset
due to local oscillator (LO) drift. We propose an adaptive
filtering framework that is able to track both the LO drift
and the RF transmitter simultaneously, using the receiver TOA
measurements and the receiver locations as inputs. Furthermore,
we propose an algorithm to optimize the receiver trajectory based
on the posterior Cramér-Rao lower bound. Simulation results
are presented to show the feasibility of the proposed method.
Finally, the proposed method is implemented on a software-
defined radio (SDR) testbed. Empirical experiments demonstrate
that our approach can successfully track both a static and moving
transmitter to within an accuracy of less than 1 m.

Index Terms—Transmitter localization, periodic signal, local
oscillator time offset, trajectory optimization, software-defined
radio

I. INTRODUCTION

Localization of RF transmitters in wireless networks is an
age-old problem with many potential military and civilian
applications, including enemy target detection and tracking
[1]–[3], spectrum sensing [4], [5], and sensor node localization
[6]. Most transmitter localization techniques rely on measuring
some parameter of the RF signal, and use it to infer the
location of the RF transmitter. One localization method that
does not require the RF transmitter to be cooperative is the
use of Time-Difference-of-Arrival (TDOA) measurements. By
recording the transmitted RF signal at two synchronized re-
ceivers, the difference in propagation time from the transmitter
to each receiver can be measured. In this paper, we try to
localize a periodic transmitter by designing a virtual TDOA
(V-TDOA) system: by measuring the time-of-arrival (TOA)
of the periodically transmitted message at different locations
along the receiver trajectory, and compensating the TOA for
the transmit period, we can determine the TDOA between
those different receiver locations. By having the receiver move
along an appropriate trajectory, the location of the periodic
transmitter can eventually be determined. The major challenge
of this otherwise simple concept is the time drift that occurs
between the transmitter and the receiver due to the local
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oscillator (LO) offset between transmitter and receiver. The
difficulty lies in separating this LO time drift from the time
offset due to V-TDOA.

The main contributions of this paper can be summarized as
follows:
• We propose an algorithm to estimate the location of a

periodic RF transmitter with a mobile receiver. Our algo-
rithm relies on adaptive filtering techniques, and allows
to track the location of the RF transmitter and the LO
offset simultaneously. Rule-of-thumbs and simulations
are presented to determine the localization accuracy.

• We investigate the optimization of the receiver trajectory
to achieve the best transmitter localization accuracy. We
show simulation results for different ratios of receiver-to-
transmitter speed.

• The proposed localization algorithm is implemented on
a software-defined radio (SDR) testbed. We show suc-
cessful localization of a static transmitter, and provide
experimental results for tracking of a mobile transmitter.

A. Related work

Localization of a RF transmitter usually relies on measuring
some parameter of the RF signal [7]–[9]. Received signal
strength (RSS) has been widely used for transmitter local-
ization [10], [11]: RSS decreases with transmitter-to-receiver
distance, and by measuring the RSS at multiple receivers
it becomes possible to locate the transmitter. Unfortunately,
multipath causes wide variations in RSS levels, making it
difficult to relate the RSS measurement to distance. Moreover,
path loss models used to relate RSS to distance need to be
calibrated to the environment, and inaccurate calibration might
result in poor localization performances.

Another parameter of the RF signal that can be used for
localization is time-of-arrival (TOA) [7]. The TOA of an RF
signal can be directly related to the distance between the
transmitter and the receiver. Using TOA requires a cooperative
transmitter: each receiver needs to know when the RF signal
was transmitted to deduce its distance to the transmitter. TOA
measurements also suffer from multipath [12], but this can
be limited by using large bandwidths. In particular, ultra-
wideband technology has shown promising results for RF
transmitter localization using TOA [13].

Measuring the Angle-of-arrival (AOA) enables a receiver to
determine the direction of the RF transmitter (if the transmitter
is in line-of-sight) [9]. By using a multi-antenna array, the
receiver can use the phase of the received signal at each
antenna element to infer the AOA of the RF signal. The



main advantage of AOA is that it works with non-cooperating
narrowband transmitters; the main disadvantage is that it
requires a MIMO array at the receiver, which comes with
major form factor constraints.

Finally, time-difference-of-arrival (TDOA) consists of mea-
suring the difference in TOA between a pair of receivers [14]–
[17]. Determining TDOA is feasible when transmitters are
non-cooperative, but requires the different receiver nodes to
be synchronized with each other to within a few nanosec-
onds [18]. Such high accuracy synchronization is hard to
achieve in practice. Even GPS synchronization results in
TDOA errors as large as 100 ns, especially in build-up envi-
ronments where having lines-of-sight to the GPS satellites may
not be feasible. Recent work has investigated the use of dif-
ferential TDOA (the difference in TDOA between the signals
from two distinct transmitters) to use TDOA measurements in
non-synchronized networks, with promising results [19].

One game-changer in RF localization is the increasing
use of unmanned vehicles equipped with RF transceivers.
Autonomous vehicles can determine their trajectory and move-
ment to achieve a localization objective, thereby reducing
the localization uncertainty (due to multipath or inaccurate
synchronization) to arbitrarily low values [20], [21]. One
example of such a localization scheme is [22], [23], where
the rotation of a UAV is exploited to obtain directional RSS
measurements, which are then used to localize the transmitter.
Optimization of a vehicle trajectory in order to localize a trans-
mitter has been considered for other types of measurements
[24]–[26]. The information content of different measurements
and the achievable localization accuracy depends significantly
on the target-sensor (transmitter-receiver) trajectory. In [24],
the optimal target-sensor geometries for range-only, TOA and
bearing-only measurements for stationary targets are obtained
based on the known position of the target. The optimization
of sensor trajectory for TDOA measurements has been con-
sidered in [25], for a scenario in which two time-synchronized
sensors are used for localizing a target. In [26], trajectory
optimization for target tracking using a UAV and bearing-
only measurements are considered. However, different types of
measurements and different scenarios yield different solutions.
In this paper, we consider the problem of optimal trajectory
of a moving receiver for localizing a (stationary or moving)
transmitter using a V-TDOA system. We take into account the
effect of time offset between the receiver and transmitter LOs
in the measurements in the trajectory optimization.

The concept of V-TDOA was first introduced in [27],
which however considered the LO offset to be a nuisance
parameter that could be ignored. As a result, the algorithms
presented in [27] can only work for high-speed vehicles (such
as flying UAVs) or transceiver systems with high-quality LOs.
In contrast, in our work, we explicitly estimate and track the
LO offset and the V-TDOA simultaneously. We build on our
prior conference papers [28], [29] by including results for
mobile transmitters and providing a method to optimize the
receiver trajectory.

The rest of this paper is organized as follows. Section II
describes the V-TDOA model and investigates the LO model
used in this work. Section III presents the adaptive filter

formulation, and simulation results of our tracking method.
The optimization of the receiver trajectory to achieve the best
tracking accuracy is presented in Section IV. The SDR imple-
mentation and experimental results are presented in Section V.
Finally, we conclude in Section VI.

II. VIRTUAL TDOA CONCEPT AND CHALLENGES

A. V-TDOA concept

We start by introducing the V-TDOA concept and defining
the notations used in this paper. Consider a transmitter sending
a message with periodicity T0. This can be a repetitive beacon
sent from a transmitter in a search and rescue operation, or
a synchronization signal transmitted by a base station in a
cellular network. If the first message is transmitted at time t0,
the receiver will receive the k-th message at time

tk = t0 + (k − 1)T0 + ∆tk + ∆τk, (1)

where ∆tk corresponds to the propagation time between the
transmitter and the receiver, and ∆τk is the time offset due
to LO drift between t0 and the time of measurement k. For a
line-of-sight environment, ∆tk is defined as

∆tk =
1

c0

√
(xR,k − xT,k)2 + (yR,k − yT,k)2,

where c0 is the speed of light, (xR,k, yR,k) are the x- and
y-coordinates of the receiver, and (xT,k, yT,k) are the x- and
y-coordinates of the transmitter1. We define a cycle as the
time period over which one message is transmitted by the
transmitter (and received by the receiver). Additionally, we
define the local time of the receiver LO at cycle k as

τk , t0 + (k − 1)T0 + ∆τk. (2)

From (1), we see that if the LO time offset ∆τk is zero,
the V-TDOA between two successive points can be estimated
by evaluating tk − tk−1 − T0. However, due to the presence
of the LO offset ∆τk, the challenge lies in estimating the
propagation time ∆tk using the measurements tk. Even for a
static transmitter, the changes in ∆τk between cycles make it
impossible to solve (1) without additional information about
the LO offset ∆τk. To overcome this problem, we use the
LO model from [30] to evaluate the evolution of the LO time
offset between cycles. This LO model is detailed in the next
section.

B. LO offset model

We begin by describing the LO model used in this paper.
We simplify the three-state LO model from [30] to a two-
state model, which is sufficient to capture the LO dynamics
of our system [31], [32]. The stochastic differential equations
describing the two-state LO model are written as{

dτ(t) = β(t)dt+ q1dw1(t)

dβ(t) = q2dw2(t)
(3)

1In this paper, we discuss only tracking in a two dimensional space. Our
formulation can however be easily extended to tracking in a three dimensional
space.



where τ(t) and β(t) are the LO local time and LO skew
at time t, and q1 and q2 are the process noise parameters
that correspond to white frequency noise and random walk
frequency noise, respectively. The noise terms w1(t), w2(t) are
two independent, one-dimensional standard Wiener processes,
each one defined as a Gaussian process with stationary inde-
pendent increments such that w(t)− w(s) ∼ N (0, t− s) and
w(0) = 0.2 Additionally, the integration of a Wiener process∫ b
a
w(t)dt is distributed as N (0, (b − a)3/3). The system in

(3) is a strictly linear stochastic differential equation. Hence,
its solution is given by [30]{

τ(t+ T0) = τ(t) + T0β(t) + q1nτ (t, T0),

β(t+ T0) = β(t) + q2nβ(t, T0).
(4)

Given the above-mentioned properties of Wiener processes,
the noise vector n(t, T0) = [nτ (t, T0) nβ(t, T0)]T can then
be shown to be distributed as n(t, T0) ∼ N (0,QLO) (see
equations (8)-(9) in [30]) with QLO equal to

QLO = q21

[
T0 0
0 0

]
+ q22

[
T 3
0

3
T 2
0

2
T 2
0

2 T0

]
(5)

From (4) we see that, for low noise terms, the LO local time
τ drifts quasi-linearly. By combining this information with
the measurements (1), it becomes possible to use an adaptive
filtering framework that will estimate the term ∆tk while
tracking the LO offset term ∆τk.

III. PERIODIC TRANSMITTER TRACKING METHOD

In this section, we introduce a system model that allows
a receiver to track the transmitter location (xT,k, yT,k) while
tracking the LO offset ∆τk. Using the LO model introduced in
Section II-B, a state-space model and measurement model are
proposed and integrated in an adaptive filtering framework.

A. Process and measurement model

Process model: For the general case of a moving transmit-
ter, the state to be estimated at cycle k is defined as

xk = [τk, βk, xT,k, ẋT,k, yT,k, ẏT,k]T , (6)

where xT,k and yT,k are the x- and y-coordinates of the
transmitter, respectively, and ẋT,k and ẏT,k are the x- and y-
coordinate speed of the transmitter, respectively. We consider
a constant-velocity model, such that the process model can be
described as

xk = Fxk−1 + wk(Q), (7)

where
F = I3 ⊗

[
1 T0
0 1

]
with I3 being a 3× 3 identity matrix and ⊗ denoting the
Kronecker product. The covariance matrix of the process noise
Q can be defined as

Q =

[
QLO 04×4
02×2 QTx

]
(8)

2We use N (µ, σ2) to denote a Gaussian distribution with mean µ and
variance σ2.

in which QLO is the 2 × 2 matrix defined in (5) and QTx is
the covariance matrix related to transmitter motion defined as

QTx =

[
σ2
a,x 0
0 σ2

a,y

]
⊗

[
T 4
0

4
T 3
0

2
T 3
0

2 T 2
0

]
,

where σ2
a,x and σ2

a,y are the variances of random acceleration
in the x and y directions, respectively.

Measurement model: At each cycle of the algorithm, the
receiver measures the TOA of the transmitted message. The
noiseless TOA tk is given by

tk = hk (xk)

, τk +
1

c0

√
(xR,k − xT,k)2 + (yR,k − yT,k)2. (9)

The measured TOA at the receiver t̂k can then be expressed
as

t̂k = hk (xk) + vk(R) (10)

where vk(R) is the zero-mean Gaussian measurement noise
with variance R. In (10), hk (xk) is a nonlinear function of
xk, which will have important consequences for the adaptive
filter design.

B. Kalman filter, EKF and UKF

The problem at hand is determining the state xk based on
the measurements t̂k (all the measurements up to cycle k). In
a Bayesian framework, the tracking problem is to recursively
estimate xk based on all the measurements t̂(1:k), up to cycle
k. This can be achieved by maximizing the conditional density
p(xk|t̂(1:k)) of the state xk. It is well-known that if the process
model and measurement model are linear, and that the process
noise and measurement noise are Gaussian random variables,
the Kalman filter provides the optimal solution to this problem.
The Kalman filter decomposes the problem into a two-stage
process, consisting of a prediction stage

p(xk|t̂(1:k−1)) =

∫
p(xk|xk−1)p(xk−1|t̂(1:k−1))dxk−1,

(11)

and an update stage

p(xk|t̂(1:k)) ∝ p(t̂k|xk)p(xk|t̂(1:k−1)), (12)

which results in a set of fairly simple recursive equations
involving the process and measurement model matrices. In our
problem, however, the measurement model (10) is nonlinear,
which requires the use of nonlinear Kalman filtering tech-
niques. In this paper, we will consider two types of adaptive
filters: the extended Kalman filter (EKF) and the unscented
Kalman filter (UKF) [33].

The principle of an EKF is to linearize the nonlinear model
(in this case the measurement model) around the current state.
The prediction stage (11) can then be expressed as

xk|k−1 = Fxk−1|k−1 (13a)

Pk|k−1 = FPk−1|k−1F
T + Q (13b)



where Pk|k represents the state error covariance matrix (or the
uncertainty on the state xk|k). The update stage (12) can then
be written as

Kk = Pk|k−1H
T
k

(
HkPk|k−1H

T
k +R

)−1
(14a)

xk|k = xk|k−1 + Kk

(
t̂k −Hkxk|k−1

)
(14b)

Pk|k = (I−KkHk)Pk|k−1 (14c)

where

Hk =
∂hk(x)

∂x

∣∣∣∣
x=xk|k−1

(15)

is the Jacobian matrix of hk(x) evaluated at x = xk|k−1.
Although very simple, the process of propagating the state
covariance matrix Pk|k through the “linearized model” often
introduces a significant error in the state covariance, resulting
in eventual divergence of the filter. We will see in the experi-
mental results that, although the EKF works fine for localizing
a static transmitter, the UKF provides better performances for
a moving transmitter.

The UKF is an extension of the EKF that does not suffer
as much from propagation of the covariance error matrix
through a “linearized model”. The principle is the following:
the state estimate is augmented with a set of sigma-points,
whose location around the mean state are chosen to match
the state covariance, and both the state and the sigma-points
are propagated through the process and measurement model
(which may be nonlinear). The covariance is then computed
based on the sigma-points. We first define the augmented state
and augmented covariance matrix:

xAk−1|k−1 = [xk−1|k−1 E{vk}]T (16a)

PAk−1|k−1 =

[
Pk−1|k−1 06×1
01×6 R

]
(16b)

where the last term of the augmented state is the mean of the
additive measurement noise, which in this case is E{vk} = 0.
The sigma-points are derived as follows:

χA,0k−1|k−1 = xAk−1|k−1,

χA,ik−1|k−1 = xAk−1|k−1 +
√

(L+ λ)PAk−1|k−1,

for i = 1, ..., L,

χA,ik−1|k−1 = xAk−1|k−1 −
√

(L+ λ)PAk−1|k−1,

for i = L+ 1, ..., 2L,

(17)

where L is the dimension of the state plus the dimension of
the noise, and λ = α2(L+ κ)− L with α = 10−3 and κ = 0
controlling the spread of the sigma-points. The matrix square
root in (17) is the lower triangular matrix of the Cholesky
decomposition of the matrix. The augmented-state sigma-
points are decomposed into sigma-points state components
χik−1|k−1 and sigma-points noise components χn,ik−1|k−1:

χA,ik−1|k−1 = [(χik−1|k−1)T (χn,ik−1|k−1)T ]T (18)

The prediction stage for each sigma-point i = 0, ..., 2L is
defined as

χik|k−1 = Fχik−1|k−1 i = 0, ..., 2L (19)

and the predicted state and state covariance can be obtained
as

xk|k−1 =

2L∑
i=0

W i
sχ

i
k|k−1 (20a)

Pk|k−1 =

2L∑
i=0

W i
c(χ

i
k|k−1 − xk|k−1)(χik|k−1 − xk|k−1)T

(20b)

where W i
s = W i

c = 1
2(L+λ) , W 0

s = λ
L+λ and W 0

c = λ
L+λ +

(1−α2 +β) with β = 2. During the update stage, the sigma-
points are projected through the observation function hk(xk),
and the additive measurement noise for each sigma-point is
added:

γik = hk(χik|k−1) + χn,ik−1|k−1 i = 0, ..., 2L (21)

The weighted observations of the sigma-points are then com-
bined to determine the UKF Kalman gain:

zk =

2L∑
i=0

W i
sγ
i
k, (22a)

Pzkzk =

2L∑
i=0

W i
c(γ

i
k − zk)(γik − zk)T , (22b)

Pxkzk =

2L∑
i=0

W i
c(χ

i
k|k−1 − xk|k−1)(γik − zk)T , (22c)

Kk = PxkzkP
−1
zkzk

. (22d)

The updated state and state covariance are then evaluated as

xk|k = xk|k−1 + Kk

(
t̂k − zk

)
, (23a)

Pk|k = Pk|k−1 −KkPzkzkK
T
k (23b)

Since in the UKF, the sigma-points are propagated through
the nonlinear function hk(xk), the recovered state and state
covariance are a better representation of the real underlying
state and state covariance. We will see in the experimental
results that the UKF is more robust when tracking a moving
transmitter.

C. Steady-state LO tracking error prediction

One of the main advantages of the linear Kalman filter is
its predictability: if the filter is observable and controllable,
the Kalman filter is guaranteed to converge. Moreover, the
state covariance error matrix is guaranteed to converge to the
solution of the discrete algebraic Ricatti equation (DARE),
which is independent of the state and can be computed a
priori based only on the process model and measurement
model. Unfortunately, no such guarantees can be given for
nonlinear EKFs or UKFs. In order to provide some insight into
the working and steady-state prediction error of our nonlinear
filters, we consider the simplified two-state system, composed
only of the local LO time and LO skew xLO,k = [τk βk]T .
Based on (4), the process model is described by

xLO,k+1 = FLO,kxLO,k + nk(QLO) (24)



with FLO,k = [1 T0, 0 1]. If we do not consider the effect
of transmitter and receiver movement in our system, the TOA
measurement of our two-state system can be expressed as

t̂LO,k = HLOxLO,k + vk(R) (25)

where HLO = [1 0]. It can easily be verified that the
Kalman filter defined by (24)-(25) is fully observable and
controllable [34]. In that case, the state error covariance
matrix PLO,k|k of the simplified Kalman filter is guaranteed
to converge towards the steady-state error covariance matrix,
which can be obtained by solving the DARE given by:

PLO,k+1|k+1 = FLOPLO,k|kF
T
LO − FLOPLO,k|kH

T
LO(

HLOPLO,k|kH
T
LO +R

)−1
HLOPLO,k|kF

T
LO + QLO

(26)

In the following experiment, we measure the LO drift with
the setup described in Section V. The transmitter and the
receiver are connected with a cable, so that the only drift is due
to the LO offset (and not to transmitter-receiver movement).
The LO time and skew are tracked with the Kalman filter
described by the process and measurement model (24)-(25).
Figure 1 shows the elements of the state covariance matrix
PLO,k|k, as well as the solution of the DARE obtained by
using Matlab’s DARE solver. It can be seen that the elements
of PLO,k|k quickly converges to the solution of the DARE. We

Fig. 1. Elements of the state covariance matrix related to the LO states for
the Kalman filter, EKF and DARE solution.

then simulate the full system by adding the time offset due to
transmitter-receiver movement to the measured LO drift, as
detailed in the simulation results in Section III-D. The first
2× 2 submatrix of Pk|k is plotted on Figure 1. It can be seen
that, when the EKF converges, the state error corresponding to
the LO states (τk and βk) converges to the solution predicted
by the DARE. Given the measurement model (9)-(10), in the
worst case, all the error on τk will propagate on the transmitter-
to-receiver distance r

r =
√

(xR,k − xT,k)2 + (yR,k − yT,k)2 (27)

with a factor c0, which will determine the transmitter local-
ization error. This leads to the following rule-of-thumb.

Rule-of-thumb: when the EKF converges, the error on the
transmitter location estimate has a worst-case variance equal
to

σ2
r = c20 ·PLO,k|k(1, 1) (28)

where PLO,k|k(1, 1) can be obtained by solving the DARE of
the “equivalent” linear Kalman filter defined by (24)-(25).

D. Simulations and discussion

We first evaluate the performances of the proposed local-
ization method through simulations. It should be noted that,
for all simulations, the transmitter and receiver movement are
simulated, but that the LO drift used in the simulations is a
real LO drift measured with our setup described in Section V.
The transmitter and receiver were connected with a cable, and
the TOAs of the periodic messages were estimated. Since the
cable length is fixed, the measured TOA values contain only
the effects of LO drift (and no effect of transmitter or receiver
movement). These measured TOA values are used to model
the LO drift in our simulations.

Fig. 2. Position estimation of a static transmitter placed at (0, 0), from two
different initial guess (x0, y0) = (6, 6) and (10,−10).

In the first simulation, we assume a static transmitter at
location (0, 0) transmitting a periodic signal with period T0 =
10 ms. The receiver moves around the transmitter with a speed
of 1.5 m/s. The receiver trajectory is a circle with its origin
at (0, 0) and radius 10 m. The measurement noise variance
of our setup (described in Section V is found to be (5 ns)2

in a multipath-free environment, but TOA estimation in real
environments will always suffer from multipath. To account
for this, the measurement noise variance in our simulations (as
well as in our EKF/UKF design) is set equal to R = (40 ns)2.
The results obtained when using the EKF are shown in



Figure 2. The red solid curve represents the receiver trajectory,
the blue dashed curve represents the estimated transmitter
location and the black square represents the real transmitter
location. The results in this figure are related to two different
initial guesses (x0, y0) = (7, 7) and (x0, y0) = (15, 15) for the
transmitter location, and are marked by crosses in the figure .
The estimation errors (difference between real value and the
estimated one) in r are also plotted as a function of the cycle
number. It can be seen that the EKF is able to successfully
localize the transmitter in both simulations.

Fig. 3. Tx localization RMSE vs measurement noise standard deviation.

The result of the DARE for the “equivalent” linear Kalman
filter is given in Figure 1. We can see that PLO,k|k(1, 1) =
(1.66 ns)2. According to our rule-of-thumb, the corresponding
transmitter localization estimate has an error with variance of
σ2
r = (0.50 m)2. We evaluate the effectiveness of our rule-

of-thumb by running a large number of realizations of the
simulation in Figure 2 (with random initial guesses), and by
measuring the error of the steady-state localization error (after
convergence). The RMSE of the steady-state localization is
equal to (0.11 m)2. This is well within the bounds of the
solution provided by our rule-of-thumb. Figure 3 shows the
transmitter localization RMSE versus the measurement noise
standard deviation

√
R. The bound predicted by our rule-of-

thumb is provided for comparison. It can be see that the RMSE
is well below the bound of our rule-of-thumb in all cases.

In the following simulation, we consider a moving trans-
mitter sending a periodic message with period T0 = 10 ms.
The transmitter starts at location (0, 0) and we consider two
values for the transmitter’s speed: vT = 0.025 m/s and 0.5 m/s.
The transmitter moves in a straight line (according to the
process model) in one scenario, and along an arc (deviating
from the process model) in another. The receiver moves in a
circular trajectory centered at (0, 0) and radius 10 m at a speed
of 1.5 m/s. We suppose that the receiver knows the initial
location of the transmitter, but has no information about the
transmitter’s motion. The simulation results when using the
EKF are shown in Figure 4. It can be seen that the receiver
is able to estimate and track the transmitter’s motion when

the transmitter speed is low. For higher transmitter speed, the
accuracy of the estimation is decreased. This is mostly due to
the fact that the movement of the receiver is small compared to
the movement of the transmitter, resulting in a poor geometry
for localizing the transmitter. Note that in the case of a moving
transmitter, the EKF parameters σa,x and σa,y have to be
increased such that the process model is able to match the
transmitter movement.

Fig. 4. Position estimation of a moving transmitter starting at (0, 0) with
different speeds vT = 0.025 and 0.5 m/s.

Fig. 5. Position estimation of a moving transmitter with speed vT = 0.025
m/s with different initial guesses.

In another simulation, we consider a moving transmitter
with speed vT = 0.025 m/s sending a periodic message with
period T0 = 10 ms. The transmitter starts at location (0, 0)
but in our simulation, the initial estimate of the transmitter’s
location is assumed not to be the correct value. We consider
different initial estimates as observed in Figure 5. It can



be seen that the receiver is able to estimate and track the
transmitter’s motion even when the initial estimate of the
transmitter’s location is incorrect.

IV. RECEIVER TRAJECTORY OPTIMIZATION

Estimating the position of a transmitter from noisy mea-
surements with the method described in Section III highly
depends on the transmitter-receiver geometry. In this section,
we consider the problem of receiver trajectory optimization
in order to achieve the best transmitter tracking performance.
Posterior Cramér-Rao lower bound (PCRLB) defines a limit
on the performance of any Bayesian estimator for a given dy-
namic system with discrete-time dynamics and measurement
model as follows:

xk = fk(xk,wk)

zk = hk(xk,vk)

where fk and hk are the process and measurement models
respectively, with measurement vector zk, process noise wk,
and measurement noise vk at time step k.

Conventional (unconditional) PCRLB [35] that averages out
the measurement information is an off-line bound that depends
only on the system process model, measurement model and
prior knowledge of the system state at the initial time step. The
mean square error (MSE) of any Bayesian estimator satisfies

E{[x̂(z)− x][x̂(z)− x]T } ≥ J−1 (29)

where x̂ is the estimator of x, J = E{−∆x
x log p(x, z)} is the

Fisher information matrix (FIM), and we use the operator ∆y
x

to denote ∇x∇Ty . Note that the expectation in (29) is with
respect to the joint distribution p(x, z).

On the other hand, the conditional PCRLB [36] utilizes the
information in the measurements up to the current time step
to determine a bound on the MSE of any Bayesian estimator
at the next time step. The conditional PCRLB for estimating a
random state vector xk and measurement vector zk is defined
as

E{(x̂k − xk)(x̂k − xk)T | z1:k−1} ≥ L−1(xk|z1:k−1),

where x̂k is the estimator of state xk given the measurements
z1:k−1 up to time k − 1. Following [36], let

I(x0:k | z1:k−1) , E{−∆x0:k
x0:k

log p(x0:k, zk | z1:k−1)},

where x0:k denotes the state vectors up to time k. Let Lx be
the length of state vector xk. Then, the conditional PCRLB
L−1(xk|z1:k−1) is equal to the Lx ×Lx lower right-block of
I−1(x0:k|z1:k−1).

Computation of the conditional PCRLB L−1(xk|z1:k−1)
directly requires computing the inverse of matrix I with
dimension Lx(k + 1)× Lx(k + 1), which is computationally
expensive. The interested reader can refer to [36] for more de-
tails. In [37], a recursive form, which is computationally much
simpler, was derived as an approximation for the conditional
PCRLB:

L−1(xk | z1:k−1) ≈ B22
k−1

−B21
k−1

[
B11
k−1 + L(xk−1 | z1:k−2)

]−1
B12
k−1 (30)

where

B11
k−1 = E{−∆

xk−1
xk−1 log p (xk | xk−1)}

B12
k−1 = E{−∆xk

xk−1
log p (xk | xk−1)} = (B21

k−1)T

B22
k−1 = E{−∆xk

xk
[log p (xk | xk−1) + log p (zk | xk)]},

and the above expectations are taken over p(x0:k, zk|z1:k−1).
In our problem as presented in Section III, the state transi-

tion model is linear, the process noise is additive Gaussian, and
the measurement model is nonlinear. Under these assumptions,
it can be shown that the conditional Fisher information in (30)
can be approximated as

L(xk|t̂1:k−1) ≈
(
Q + F(L(xk−1|t̂1:k−2))−1FT

)−1
+ E{−∆xk

xk
log p(t̂k|xk)}, (31)

where F is the state transition matrix and Q is the covariance
matrix of the process noise as defined in Section III.

To compute the last term in the conditional FIM given in
(31), from (10), we know that the measurement noise is zero-
mean Gaussian with covariance R, therefore we have

p(t̂k|xk) =
1√
2πR

× exp{−
(
t̂k − hk(xk)

)2
2R

} (32)

and it can be shown that

−∆xk
xk

log p(t̂k|xk) = − 1

R

(
∆xk

xk
hk(xk)

)T
(t̂k − hk(xk))+

1

R
(∇xk

hk(xk))
T ∇xk

hk(xk) (33)

By replacing (33) in (31), the recursive form of the approx-
imate conditional FIM can be written as

Lk =
(
Q + FL−1k−1F

T
)−1

+
1

R
(∇xk

hk(xk))
T ∇xk

hk(xk).

(34)
The conditional FIM equation in (34) implies that infor-

mation at each time step consists of two parts: the first term
that relates to the prediction part (prior information) and the
second term that comes from current measurement (update).

In (34), the initial (conditional) FIM L0 is computed as

L0 = E{[∇x0
log p(x0)][∇x0

log p(x0)]T }

where expectation is respect to p(x0). For the initial Gaus-
sian distribution p(x0) with mean x and covariance P0|0 ,
N (x,P0|0), it follows that

L0 = E{P−10|0(x0 − x0)[P−10|0(x0 − x0)]T }
= P−10|0E{(x0 − x0)(x0 − x0)T }P−10|0

= P−10|0P0|0P
−1
0|0 = P−10|0. (35)

A. Optimizing receiver trajectory

The receiver trajectory must be chosen carefully to improve
localization performance and convergence of the EKF/UKF.
The objective of this subsection is to determine which tra-
jectories maximize the amount of information provided by
the measurements and result in optimal target localization and
tracking. We consider the trace of the approximate conditional
PCRLB (given by the inverse of Lk in (34)) as the objective



function. The eigenvectors of the conditional PCRLB are the
axes of the uncertainty ellipsoid of the parameters to be
estimated, and their corresponding eigenvalues are the lengths
of the axes. The trace of the conditional PCRLB represents
the average variance of the estimates [24]. The computation
of Lk in (34) is based on the true positions of the transmitter.
However, in this problem the true positions of the transmitter
is unknown and our goal is to estimate them. Therefore, at
each time step k, we use the predicted state xk|k−1 of the
transmitter in the computation of Lk to obtain

L̂k =
(
Q + FL̂−1k−1F

T
)−1

+
1

R

(
∇xk

hk(xk|k−1)
)T

∇xk
hk(xk|k−1) =

(
Q + FL̂−1k−1F

T
)−1

+
1

R
HT
kHk.

(36)

Depending on the application, different constraints can be
added to the receiver trajectory optimization problem. In this
paper, as a proof of concept, we consider the following
minimization problem for optimizing the receiver trajectory:

min
xR,k,yR,k

trace(L̂−1k ) (37a)

subject to

(xR,k − xT,k)2 + (yR,k − yT,k)2 ≥ d2min, (37b)

(xR,k − xR,k−1)2 + (yR,k − yR,k−1)2 ≤ v2R,maxT
2
0 , (37c)

where xT,k and yT,k are the third and fifth components
in the predicted state xk|k−1 (i.e., the predicted x- and
y-coordinates of the transmitter, respectively), dmin is the
minimum distance between the receiver and transmitter, and
vR,max is the maximum speed of the receiver. This corresponds
to many practical applications, including stealth tracking, in
which the receiver is required to maintain a minimum distance
from the transmitter. In our simulations and experiments, we
consider only scenarios in which the constraints (37b)-(37c)
are feasible.

Using the estimated position of the transmitter at each time
step, the estimated value of the conditional FIM defined above
is used in the objective function (37a) to find the optimum
position of the receiver at the next time step. Given the non-
linearity of the objective function and the constraints, different
numerical methods (such as gradient descent) can be used to
solve the optimization problem.

B. Simulations and discussion

In this section, we consider different scenarios for localiza-
tion and tracking of both a static and a moving transmitter.
At the same time, we determine the optimum trajectory of the
receiver in each scenario for tracking of the transmitter. In all
the scenarios considered in this section, the minimum distance
and measurement noise are set as dmin = 8 m and σn = 40 ns.
We use the EKF developed in Section III-B as the transmitter
location estimator except otherwise stated. In Figure 6, the
optimum receiver trajectory obtained from the optimization
is shown in red, and the true and estimated trajectory of the
transmitter are plotted in black and blue respectively. In these

Fig. 6. Receiver trajectory optimization and position estimation of static
and moving transmitters. (a) Static transmitter placed at (0, 0), (b) a moving
transmitter with speed of vT = 4.2 m/s and vR,max = 30 m/s, and (c) a
moving transmitter with speed of vT = 1.5 m/s and vR,max = 3 m/s.

figures, the initial position of the receiver is shown with a red
circle.

In the first scenario, we consider a fixed transmitter placed at
position (0,0). We try to simultaneously locate the transmitter
and determine the receiver’s optimal trajectory. The maximum
receiver speed is vR,max = 5 m/s, and the initial position of the
receiver is (15, 0). The result of this simulation, demonstrated
in Figure 6 (a), shows that the optimum trajectory of the
receiver converges to a circle around the transmitter with
radius equal to dmin. We note that in all the simulations, the
receiver always moves at the maximum allowed speed vR,max.
In the second scenario, we consider a transmitter moving with
constant velocity. The transmitter speed is set to vT = 4.2 m/s
and the receiver maximum speed is vR,max = 30 m/s. The
optimal trajectory is shown in Figure 6 (b). The receiver moves
in a spiral around the estimated position of the transmitter.
In the third scenario, we decrease the receiver-to-transmitter
speed ratio vR,max/vT . We see in Figure 6 (c) that, when
vR,max/vT becomes small, the optimum trajectory is an
“elongated” version of the spiral shape. The lower the ratio
vR,max/vT , the more elongated the spiral trajectory becomes.

We also evaluate the effect of vR,max/vT on the transmitter
location estimation error. In these simulations, the transmitter
is moving with a speed of vT = 10 m/s, and the maximum
speed of the receiver is defined so that λ = vR,max/vT
varies from 0.8 to 8. The RMSE of the transmitter location
estimation is obtained by averaging over 100 Monte Carlo
runs, and shown in Figure 7. In order to provide a common
reference point for different values of λ, we assume that the
receiver knows the initial position of the transmitter. It can
be seen that for λ > 1, the RMSE first increases and then
decreases. This is due to the fact that the initial location of the



transmitter is known, but the transmitter velocity and LO offset
are unknown. The transmitter location estimate obtained by the
EKF in the early iterations will thus move away from the true
transmitter locations, until the EKF is able to provide a better
estimate for the transmitter velocity and LO offsets. Eventu-
ally, the EKF estimate converges towards the true transmitter
location. It is observed that for higher values of λ, the RMSE
converges to its steady-state value much faster. The higher the
speed of the receiver with respect to that of the transmitter,
the lower the maximum and steady-state RMSE becomes. The
results also shows that the receiver should move with a speed
higher than that of the transmitter for the adaptive filter to
converge. This can be understood intuitively as follows: for
higher speeds, successive receiver points will be spread further
apart, thereby providing more information about the state
to be estimated (and most importantly about the transmitter
location). At lower speeds, successive receiver points will be
located close together, providing little information about the
transmitter location.

Fig. 7. Root Mean Square Error (RMSE) of location estimation of a moving
transmitter for different λ = vR,max/vT .

V. IMPLEMENTATION AND EXPERIMENTAL RESULTS

A. Experimental setup

We evaluate the feasibility of our transmitter localization
technique by implementing it on a software-defined radio
(SDR) testbed. Both the transmitter and the receiver used in
our testbed are USRP-N210, a popular SDR model, equipped
with WBX daughterboards [38]. Each SDR is connected to
a host processor, which performs the signal processing in
real-time with GNU Radio software [39]. The transmitter
sends a random pre-generated QPSK message with a 1 MHz
bandwidth, at a carrier frequency of 855 MHz. The trans-
mitted message is 1 ms long, and is repeated at a rate of
10 Hz. The receiver’s block-diagram is shown in Figure 8.
The SDR sends the baseband sample to the host processor
with a sample rate of 10 MHz. The baseband samples are
processed in real-time: after a low-pass filter, the received

samples are correlated with the known transmitted messages
to obtain the TOA of the received packets. Since correlating
every incoming sample in real-time is too heavy a burden for
a general-purpose processor, a power detector was included
between the low-pass filter and the correlator to detect the
presence of incoming packets. To increase the resolution
beyond 10 MHz, the receiver applies a quadratic interpolation
between the three highest points of the correlation function
[28], [40]. Lab results with fixed-length cables show that, at
high SNR and in multipath-free situations, the TOA accuracy
can be increased to typical values below 5 ns. The receiver is
also equipped with a high-precision differential GPS (DGPS)
which measures the receiver’s position with high accuracy.
The receiver’s position is measured at a rate of 10 Hz, and
converted to x-y coordinates. The TOA and x-y coordinates
are then used by the EKF/UKF, which estimates the LO drift
and transmitter location. Note that the EKF is implemented
in GNU Radio and allows for real-time location, whereas
the UKF was implemented and tested off-line with recorded
TOA and GPS data. The USRP testbed is mounted on trolleys

Fig. 8. Block diagram of the receiver. Note that the EKF can be replaced
with the UKF without any other change.

which are manually pushed around to move the transmitter
and receiver. The measurement were performed in an open
environment (e.g. a sports field) to avoid the presence of rich
multipath. The speed of the receiver was typically 1.5 m/s,
while the speed of the transmitter was low (∼ 0.25 ms/s). In
the case of the moving transmitter, the receiver was moved in a
pattern similar to the optimal pattern determined in Section IV.

B. Localization of a static transmitter
The first set of experiments was with a static transmitter.

It was determined that, for a static transmitter, the EKF is
able to localize the transmitter accurately. The transmitter
was placed in the center of the measurement area, and the
receiver was moved in a roughly circular trajectory around
the transmitter (the distance between transmitter and receiver
was roughly 10 m). The initial position of the transmitter in the
EKF was set to various random values. The results are shown
in Figure 9, for different initial guesses of the transmitter
location. Figure 9 illustrates the trajectory of the receiver (in
red), the real position of the target (in black) and estimated
position of the target (in blue) for different values of (x0, y0) in
the EKF algorithm. It is observed in Figure 9 that in all cases
the algorithm is able to converge toward the true transmitter
position.

C. Tracking of a moving transmitter
In a second set of experiments, the transmitter is moved

along a straight line. The receiver is moved in a trajectory



Fig. 9. Position estimation of a static transmitter placed at (0, 0) with
different initial guess (x0, y0) = (0,−5), (7, 7), (5, 5) and (5, 0).

similar to the optimal trajectories obtained in Section IV. The
initial location and direction of the transmitter is assumed to
be known. The distance between the transmitter and receiver
was kept higher than 5 m at all times. The EKF could only
produce appropriate tracking performances when hand-tuning
the filter parameters for each measurement, but the UKF
was able to provide satisfying result without having to tune
the filter parameters for each measurement. Figure 10 shows
the tracking capabilities of the UKF for different ratios of
receiver-to-transmitter speed vR/vT , where vR and vT are
the receiver and transmitter speeds, respectively. Note that
the performance usually degrades towards the end of the
measurement run, which is due to the fact that the transmitter
and/or the receiver comes to a halt. It can be seen that the
best performances are obtained when vR/vT is highest. In that
case, the receiver is able to perform a wide rotation around
the transmitter, providing good resolution along all directions
and good tracking performances.

VI. CONCLUSION

We proposed a method to determine the location of a peri-
odic RF transmitter with a mobile receiver. An adaptive filter
is used to determine the transmitter location and the LO offset,
with the received TOAs and the receiver’s locations as inputs.
Simulation results showed that the proposed method is able
to determine and track the location of the RF transmitter. A
simple rule-of-thumb is proposed to determine the localization
accuracy of our method, and we show how it is related to
the solution of the DARE of the LO-only (linear) adaptive
filter. We then investigated which trajectory the receiver should
take to optimize the transmitter localization performances by
obtaining the PCRLB for this problem and minimizing the
trace of it subject to some nonlinear constraints. We showed
that for this measurement method, the optimal trajectory of the
receiver for a static transmitter is a circular trajectory around

Fig. 10. Tracking performance for a moving transmitter, for different ratios
of receiver-to-transmitter speed.

the transmitter. When decreasing the receiver-to-transmitter
speed ratio, the optimal trajectory becomes “elongated”. The
proposed localization method was successfully implemented
on a SDR testbed. Experimental results showed that the
localization of a static transmitter could be achieved with a
nonlinear filter as simple as an EKF. Tracking of a moving
receiver proved to be more difficult, and could only be
achieved by using a UKF.

The proposed localization method will be extended to
achieve self-localization of vehicles (with a geographically
known periodic transmitter) in GNSS-challenged environ-
ments. In such situations, the adaptive filtering framework can
be augmented to also take into account inertial measurement
unit (IMU) measurements. Another exciting prospect is the uti-
lization of virtual AOA measurements for transmitter direction
estimation. By estimating the phase of the received periodic
messages, the receiver can estimate the AOA of the signal.
The challenge lies in separating the AOA phase offset from
the phase offset due to LO drift, similar to the V-TDOA case.
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